Specific Functions of BIG1 and BIG2 in Endomembrane Organization
نویسندگان
چکیده
BACKGROUND Transport of molecules from one subcellular compartment to another involves the recruitment of cytosolic coat protein complexes to a donor membrane to concentrate cargo, deform the membrane and ultimately to form an independent carrier. Small-GTP-binding proteins of the Arf family are central to many membrane trafficking events. Arfs are activated by guanine nucleotide exchange factors (GEFs) which results in their recruitment to membranes and subsequent engagement with Arf-effectors, many of which are coat proteins. Among the human BFA-sensitive large Arf-GEFs, the function of the two closely related BIG1 and BIG2 is still not clear, and recent studies have raised the question of functional redundancy between the two proteins. METHODOLOGY/PRINCIPAL FINDINGS Here we have used small-interfering RNA on human cells and a combination of fixed and live-cell imaging to investigate the differential functions of BIG1 and BIG2 in endomembrane organization and function. Importantly, in this direct comparative study, we show discrete functions for BIG1 and BIG2. Our results show that depletion of BIG2 but not of BIG1 induces a tubulation of the recycling endosomal compartment, consistent with a specific role for BIG2 here. In contrast, suppression of BIG1 induces the formation of Golgi mini-stacks still polarized and functional in terms of cargo export. CONCLUSIONS A key finding from our work is that suppression of BIG1 expression results in a fragmentation of the Golgi apparatus. Our data indicate that the human BFA-sensitive large Arf-GEFs have non-redundant functions in cell organization and membrane trafficking. BIG1 is required to maintain the normal morphology of the Golgi; BIG2 is important for endosomal compartment integrity and cannot replace the function of BIG1 in Golgi organization.
منابع مشابه
Arf guanine nucleotide-exchange factors BIG1 and BIG2 regulate nonmuscle myosin IIA activity by anchoring myosin phosphatase complex.
Brefeldin A-inhibited guanine nucleotide-exchange factors BIG1 and BIG2 activate, through their Sec7 domains, ADP ribosylation factors (Arfs) by accelerating the replacement of Arf-bound GDP with GTP for initiation of vesicular transport or activation of specific enzymes that modify important phospholipids. They are also implicated in regulation of cell polarization and actin dynamics for direc...
متن کاملAssociation of brefeldin A-inhibited guanine nucleotide-exchange protein 2 (BIG2) with recycling endosomes during transferrin uptake.
ADP-ribosylation factors (ARFs) are critical in vesicular trafficking. Brefeldin A-inhibited guanine nucleotide-exchange protein (BIG)1 and BIG2 activate ARFs by accelerating replacement of bound GDP with GTP. Additional and differing functions of these approximately 200-kDa proteins are now being recognized, as are their independent intracellular movements. Here, we describe the localization i...
متن کاملNuclear localization and molecular partners of BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein for ADP-ribosylation factors.
Brefeldin A-inhibited guanine nucleotide-exchange protein 1 (BIG1) is an approximately 200-kDa brefeldin A-inhibited guanine nucleotide-exchange protein that preferentially activates ADP-ribosylation factor 1 (ARF1) and ARF3. BIG1 was found in cytosol in a multiprotein complex with a similar ARF-activating protein, BIG2, which is also an A kinase-anchoring protein. In HepG2 cells growing with s...
متن کاملInteraction of FK506-binding protein 13 with brefeldin A-inhibited guanine nucleotide-exchange protein 1 (BIG1): effects of FK506.
BIG1 and BIG2 are brefeldin A-inhibited guanine nucleotide-exchange proteins that activate ADP-ribosylation factors (ARFs), critical components of vesicular trafficking pathways. These proteins can exist in macromolecular complexes and move between Golgi membranes and cytosol. In the BIG1 molecule, a centrally located Sec7 domain is responsible for ARF activation, but functions of other regions...
متن کاملInteraction of phosphodiesterase 3A with brefeldin A-inhibited guanine nucleotide-exchange proteins BIG1 and BIG2 and effect on ARF1 activity.
ADP-ribosylation factors (ARFs) have crucial roles in vesicular trafficking. Brefeldin A-inhibited guanine nucleotide-exchange proteins (BIG)1 and BIG2 catalyze the activation of class I ARFs by accelerating replacement of bound GDP with GTP. Several additional and differing actions of BIG1 and BIG2 have been described. These include the presence in BIG2 of 3 A kinase-anchoring protein (AKAP) d...
متن کامل